Ignatius Ali Alamsyah Djaynurdin

301 10th St NW Atlanta, GA 30318 | +1(206) 657 0847 | ignatius@gatech.edu | F-1 Visa Holder linkedin.com/in/alialamsyah/ | ignatiusdjaynurd.in | github.com/SubugFcz

Education

Georgia Institute of Technology | Atlanta, GA

Candidate for Bachelor of Science in Computer Engineering, Dean's List

Bellevue College | Bellevue, WA

Transfer with 62 Credit Hours, Graduated with High Distinction

September 2020 – June 2022

Expected Graduation: Dec 2024

August 2022 - Present

Skills

Programming: C, C++, Embedded C, Java, Verilog, VHDL, Python, PHP, R, MIPS Assembly, RISC-V Assembly

Software: KiCad, Cadance, ModelSim, Quartus Pro, STM32, Arduino, Keil Studio, Microsoft 365, Adobe Creative Suite

Languages: English (fluent), Indonesian (native)

Experience

Polytron Indonesia | Kudus, Indonesia

May 2023 – July 2023

Research and Development Embedded Software Engineer Intern

- Developed and optimized algorithms for determining the State of Charge (SoC) and State of Health (SoH) of battery packs using STM32 microcontrollers.
- Programmed and tuned a Kalman filter on STM32 microcontroller for precise battery performance calculations in embedded C.
- Modified PCB to enable UART communication for serial monitor interaction to start data acquisition to gather charging and discharging characteristics for creating usable datasets.

Projects

BMS BQ76920 Library for STM32 MCU | Internship

- STM32 MCU library for BMS enabling voltage/current monitoring, protection, and cell balancing for Lithium Batteries.
- Implemented State of Charge (SOC) and State of Health (SOH) estimation using Kalman filters for precise battery status
 assessment.

Shunt Current Sensor PCB Design | GT Solar Racing

- Designed and prototyped PCB for integrating the Shunt current sensor into the Battery Monitoring System (BMS) and MCU.
- Finished training and received PCB Fabrication certificate from Texas Instruments Maker Space (The Hive) for ProtoLaser and ProtoMat machine.

RPG Game NXP LPC1768 MCU | Embedded Project

- Designed and developed an RPG (Role-Playing Game) utilizing microcontrollers and breadboard.
- Implemented an advanced data structure, Hashmap, and coded the project in the C using Keil Studio.

Connected Components Labelling | Assembly Project

- Implemented Two-Pass Algorithm in C and MIPS Assembly to label connected components in binary images.
- The c version used integers for labels and grouped connected pixels, while the MIPS Assembly version displayed components in different colors.

Relevant Coursework

VLSI and Advanced Digital Design: Understanding of CMOS technology and fabrication, proficient in VHDL and FPGA use, with hands-on experience in breadboarding. Worked with Cadence Virtuoso to layout full-adder.

Data Structures and Algorithms: Work with advanced data structures used in software development and become familiar with sorting algorithms, pattern matching, and graphs.

Embedded System Design: Embedded OS; device drivers and applications for embedded systems. Design and implement hardware and software interfaces to connect standard I/O devices to a computer.

Intro to High-Level Language and Assembly Programming: Hardware development for microcontrollers using design principles for sequential and procedural programming in C and MIPS assembly language.

High-Performance Computer Architecture: Understanding fundamental principles of the major components of a processor, memory hierarchy, I/O subsystem, and basic operating system constructs that utilize them.

Organization

Georgia Tech Solar Racing | Batteries and BMS Team Member

September 2022 – May 2023

- Utilized Riedon Shunt current sensor for the battery pack.
- Designed and implemented various system circuit boards for BMS, current sensor, and regulator using KiCad.